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Abstract—Residual Reinforcement Learning (RL) is a pop-
ular approach for adapting pretrained policies by learning a
lightweight residual policy to provide corrective actions. While
Residual RL is more sample-efficient compared to finetuning
the entire base policy, existing methods struggle with sparse
rewards and are designed for deterministic base policies. We
propose two improvements to Residual RL that further enhance
its sample efficiency and make it suitable for stochastic base
policies. First, we leverage uncertainty estimates of the base policy
to focus exploration on regions in which the base policy is not
confident. Second, we propose a simple modification to off-policy
residual learning that allows it to observe base actions and better
handle stochastic base policies. We evaluate our method with both
Gaussian-based and Diffusion-based stochastic base policies on
tasks from Robosuite and D4RL, and compare against state-of-
the-art finetuning methods, demo-augmented RL methods, and
other residual RL methods. Our algorithm significantly outper-
forms existing baselines in a variety of difficult manipulation
environments.

I. INTRODUCTION

Residual Reinforcement Learning is popular in robotics
for adapting pretrained robot policies using a residual agent
that learns to maximize reward through environment interac-
tions [26, [14]. Directly fine-tuning the pretrained policy is
often computationally expensive, especially in the case of
policies with a large number of parameters [7, 4] and is
prone to instability [18]. In contrast, Residual RL provides
an efficient alternative to refine the base policy with minimal
additional computation. This residual correction enables the
agent to make targeted improvements, regardless of whether
the base policy is model-based or model-free.

Despite the promise of Residual RL, existing algorithms suf-
fer from unconstrained exploration, often requiring extensive
online interaction and dense reward shaping to achieve mean-
ingful improvements [16, [29]]. Furthermore, recent advance-
ments in imitation learning leverage highly effective stochastic
policies: Gaussian mixture model-based policies [17] and
Diffusion policies [7] excel at modeling complex, multi-modal
distributions. Unfortunately, original Residual RL algorithms
[26} [14] are not suitable for such stochastic policies as they
implicitly assume that the underlying base policy is determin-
istic.

In this paper, we address these limitations by proposing two
improvements to Residual RL that increase sample complexity
and are suitable for stochastic policies. First, we leverage
uncertainty estimates from the base policy to guide the ex-
ploration of the residual policy. Our key insight is that regions

Fig. 1: We test our proposed approach on the Lift, Can, and
Square tasks from Robosuite [[17]] and the Franka Kitchen Task
from D4RL [8]].

where the base policy is confident require minimal exploration
by the residual agent, allowing it to focus exploration on areas
of high uncertainty. This targeted exploration significantly
improves the sample efficiency of residual learning. Second,
existing off-policy Residual RL algorithms learn the Q(s, a..)
function only for the residual action a,., implicitly assuming
that the base policy’s action can be inferred from the state
s. However, this is insufficient when dealing with stochastic
base policies, since they can take different actions from the
same state. In the stochastic setting, the Residual RL agent is
unable to infer the base action, making it difficult to effectively
learn a good residual action. Some works have used learned
bottleneck features of the base policy as a prior for residual
learning [1]] while others augmented the observed state with
the base action for on-policy learning [3]. We propose an
asymmetric actor-critic RL approach, in which the critic learns
the @ function for the fully observed action executed in the
environment, comprising both the base action and the residual
action, while the actor learns partial residual actions only. This
formulation ensures that information about the stochastic base
actions is available to the ) function while also making the
learning invariant to the split between the residual and base
action.

We evaluate our approach on a variety of manipulation tasks
from Robosuite [[17] and Franka Kitchen tasks from D4RL
[8]. We also test our approach with both Gaussian Mixture
Model-based and Diffusion-based base policies. Finally, we
compare our approach with state-of-the-art finetuning methods
[21]], demo-augmented RL method [13], and other Residual
RL methods [28} 26} [14]. Our proposed approach is able to
outperform or is comparable to other baselines in all tasks. We
also perform several ablation studies to test various aspects of
our algorithm.

Our proposed approach is visualized in Figure [2] with the
main contributions summarized as follows:

1) We present a novel algorithm to mitigate the exploration
problem of Residual Reinforcement Learning using un-
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Fig. 2: We propose two improvements to accelerate Residual RL :

Observation

1) We use uncertainty metric to constrain the exploration

around base policy by using the base action directly if the base policy is certain and adding the residual action when the base
policy is uncertain. 2) We modify off policy critic to learn the @) function for the combined action.

certainty estimates

2) We modify off-policy Residual Reinforcement Learning
to work with stochastic base policies by providing the
combined base and residual action to the critic and
sampling the residual action from the actor.

3) We validate our method on robotic manipulation tasks
from different simulators and against several baselines.

II. RELATED WORK

Imitation Learning and Residual RL. Several works have
explored the integration of base policies trained using Imitation
Learning (IL) with Residual RL. [23]] applied Residual RL to
insertion tasks, utilizing both a hand-designed controller as the
base policy and incorporating an auxiliary behavior cloning
(BC) loss during RL training, a technique first proposed in
[19]. FISH [12] employs a non-parametric base policy along-
side a residual policy that uses optimal transport matching
against offline demonstrations as the reward. BeT [25]] intro-
duces a residual action corrector that refines continuous actions
on top of a discretized imitation policy. IBRL [13] does not
directly use Residual RL but it bootstraps an RL policy from
an IL policy by utilizing IL actions as alternative proposals
for both online exploration and critic updates. Closest to
our method is Policy Decorator [28|] which learns bounded
residual actions using controlled exploration. Unlike Policy
Decorator, which uniformly samples action from the base
policy and residual policy, we use uncertainty estimates of
the base policy to decide when to learn corrective residual
actions.

Residual RL for Stochastic Base Policies. Residual RL,
first introduced for robotics in [14] and [26], learns a cor-
rective residual policy over a base controller, which can be
either hand-designed or derived from model-predictive con-
trol. Importantly, these methods assume a deterministic base
controller, as the residual policy is not conditioned on the base
action. However, current state-of-the-art imitation learning

algorithms like Diffusion policy [[7] and GMM-based policies
[17] are non-deterministic making the original Residual RL
formulation insufficient due to the lack of information about
the base policy. [16} 29] introduce noise in the base action
to enhance robustness and induce stochasticity. Other works
inform the residual learning about the base policy by condi-
tioning the residual learning on the learned bottleneck features
of the base policy [1], and incorporating the base action in
the observed state to inform the residual policy for on-policy
learning [3]]. In contrast, our work modifies off-policy RL
algorithm to learn the () function for the combined action
taken in the environment (i.e. the sum of base and residual
action) while the actor still uses the same () function to select
a residual action. Therefore, our Residual RL formulation can
handle the stochasticity of the base policies by making the
base action observable to the critic while also being invariant
to the split between the base action and residual action.
Policy Decorator [28] also uses the combined action as an
input to their critic for Residual RL, but we provide precise
pseudo code for changing the SAC algorithm as well as a
thorough quantitative evaluation with ablations to show that it
significantly improves performance.

Uncertainty estimates in Imitation Learning. Uncertainty
estimation plays a crucial role in improving the reliabil-
ity and robustness of machine learning models, particularly
in decision-making and RL tasks. Various approaches have
been proposed to quantify uncertainty, including distance-
based techniques [20} 27]], Diffusion-based techniques [6, [15],
ensemble-based techniques [2, 24, 9] and learning another
model to estimate uncertainty [22 |5, [10]. Suh et al. [27]]
proposes a method that measures the distance of a given
input to the training data distribution. This approach assumes
that samples farther from the training distribution exhibit
higher uncertainty, making it particularly useful for detect-
ing out-of-distribution (OOD) inputs and improving model
generalization. Lee and Kuo [15] uses the loss function of



a Diffusion model to estimate uncertainty, where higher loss
values indicate greater uncertainty. Our algorithm is agnostic
to the uncertainty quantification method, and we perform
ablations with different uncertainty metrics.

IIT. UNCERTAINTY AWARE RESIDUAL RL FOR
STOCHASTIC POLICIES

The problem statement for our method is defined in
Sec. We describe how to incorporate Uncertainty Es-
timates in Residual RL in Sec. Finally, we describe our
modified off-policy RL algorithm in Sec.

A. Problem Statement

In Residual RL, we assume that we have a suboptimal base
policy m, either model-based or model-free. The objective
is to learn a lightweight residual policy 7, on top of the
base policy that gives a corrective action a, to produce a
more accurate and robust policy. Residual RL transforms the
original markov decision process (MDP) formulation M =<
S,A,R,T,v > to the residual MDP (RMDP) formulation
M, =< S, A, R, T.,v > [26]. S is the set of states, A,
is the set of residual actions, R is the reward received for
taking action a, € A, in state s € S, T, is the probability of
taking action a,. in state s and ending up in a new state s’ and
~ is the discount factor. The residual transition function can
be converted back to original transition function as follows :

Tr(saarvsl) :T(Svﬂb(3)+a7‘asl) (1)

B. Uncertainty aware Residual RL

Prior works in Residual RL suffer from unrestrained explo-
ration as they learn corrective residual actions uniformly over
the entire state space. Our key insight is to improve exploration
by focusing residual learning on regions in which the base
policy is not confident. We propose using the uncertainty of
the base policy to decide when to learn a residual action for
the base policy. If the base policy is certain about its action for
the current state we directly use the action from base policy
ap to step in the environment and instead use a corrective
residual action when the base policy is uncertain. Our proposed
approach is agnostic to the uncertainty quantification method
and we further test our method with two metrics, namely
distance-to-data and ensemble variance. Distance-to-data has
been used to calibrate the uncertainty of a model by measuring
how out-of-distribution the current state is from an existing
dataset [27]. For a dataset D with each datapoint having F
features, we can estimate uncertainty using the minimum L2
distance of the current state s to all points d € D :

2

uncertainty ,(s) = min
Yd( ) e

Another popular approach to calibrate uncertainty is by mea-
suring the variance in predicted actions amongst an ensemble

of policies. For an ensemble of N base policies 7, € 7, the
ensemble uncertainty can be defined as -

(m,(a | s) — %Zm(a | s))
o ©)

Furthermore, we use an uncertainty threshold 7 to measure the
confidence of the base policy. This can be formulated as

ap
Gtaken =
ap + ar

As learning progresses, we decay this uncertainty threshold
7 exponentially from a maximum uncertainty threshold value
U according to the following equation:

N 2

. 1
uncertainty, (s) = i
b

=1

if uncertainty < 7
Y @)

otherwise

—ste]

7= U * eTaye 5)

The uncertainty threshold 7 ultimately decays to O to let the
residual policy take over. We perform ablations for different

decaying strategies in Sec.
C. Optimizing Residual RL for Stochastic Policies

The original Residual RL algorithms are formulated to learn
only using the partial residual actions, operating under the
assumption that the underlying base policy is deterministic and
can be implicitly inferred. Therefore, it learns the () function
for only the partial residual action which is different from
the action taken in the environment. Incorporating stochastic
policies into the residual transition function 7. can make it
much harder to learn as they are noisier in their predictions and
hence difficult to model. Thus, we suggest using Eq[I]to retreat
back to the original MDP formulation. Consequently, the @
function is learned for the combined action (a. = ap + a,)
which is the actual action used during environment interaction.
Previously, ResiP [3] proposed augmenting the observed state
with base action to provide the missing information for on-
policy RL. We instead propose learning the critic for the
combined action (a. = ap + a,-) for off-policy RL to provide
the necessary information about the base policy to the @
function while also making it invariant to the split between
residual action and the base action. Specifically, we modify the
soft actor-critic [[11]] algorithm in the following ways (changes
marked in green). Initially, we store both the base action and
the combined action in the replay buffer. While computing the
target values, we should add the base action to the residual
action sampled from the actor as follows -

y(r,s'.d) =r+y(1—d)
(min Qu; (s', @), + @) — alogm(a;]s")),  (6)
a. ~ m(-]s")

While updating the () function we should use the combined
action stored in the replay buffer -

Jo(6) =E [(Qu,(s,00) — y(r, s, )], i=1,2 (@)



When updating the actor, we can again add the base action
to get the @) value -

Jx(0) =E [Q@(S, ar +ap) — alog 777“((1'7‘|8)] )

8
i=1,2, ®

ay ~ m-(+]$)
The complete algorithm is described in Alg. with the
proposed changes in SAC marked in green.

Algorithm 1 Uncertainty aware Residual RL

1: Initialize parameters of residual policy m,, Q-functions
Q4. Qs,, and temperature o
: Initialize target Q-function parameters ¢} < ¢1, ¢h < P2
. Initialize base policy
: for each environment step do
Sample residual action from actor
ar ~ T (8¢)
Sample base action from base policy
ap ~ mp(St)
9: Calculate uncertainty threshold 7 for the base policy, Eq.[]

e A A o

10: Calculate the uncertainty in base policy, Eq. [2]

11: Select the action to be taken in the environment, Eq. ]
12: Observe next state s;y1 and reward 7

13: Store (¢, e, ap, T't, S¢+1) in replay buffer D

14: end for

15: for each gradient update step do

16: Sample a minibatch {(s, ac, ap,7,s’)} from D

17: Compute target value according to Eq

18: Update Q-functions by minimizing according to Eq.
19: Update policy mp using Eq.

20: Update target networks ¢

21: end for

IV. EXPERIMENTS

The setup for our experiments is described in Sec.
We provide details on the baselines used in Sec. We
conduct an analysis on our results in Sec. We compare
the effect of deterministic base policy in Sec. Finally,
we describe our ablation studies in Sec.

A. Experiment Setup

We define the robotic manipulation tasks for our experi-
ments in Sec. All environments use sparse rewards and
state-based observations with task visualizations in Fig. [T} We
run all experiments with 5 seeds and provide hyperparameters
used in the supplementary material.

1) Environments: Robosuite - We evaluate the performance
of the Panda robotic arm on three distinct tasks from the
Robosuite simulator. We receive a sparse reward of 1 for
successfully completing the task and O otherwise. We use the
following tasks: 1) Lift task, where the robot arm must pick
up a block placed at a random initial position on the table. 2)
Can task, where the robot arm has to pick up a can from one
table and place it in the top right corner of another table. 3)
Square task, where the robot arm must pick up a square nut
from the table and place it onto a square bolt.

Franka Kitchen - The Franka Kitchen environment from
the D4RL benchmark [8] features a Franka robot operating

within a kitchen setup that includes a microwave, kettle, over-
head light, cabinets, and an oven. The robot is required to inter-
act with these objects to achieve a multitask goal configuration.
It receives a reward of 1 for successfully completing each
of the 4 sub-goals, and we report the normalized reward for
each trajectory. The environment includes three datasets for the
Franka Kitchen task from the D4RL benchmark: 1) Kitchen
Complete - This dataset is limited in size and consists solely
of positive demonstrations. We perform additional experiments
with the other two datasets. 2) Kitchen Mixed - This dataset
includes undirected demonstrations, with a portion of them
successfully solving the task. 3) Kitchen Partial - This dataset
also contains undirected demonstrations, but none of them
fully solve the task. However, each demonstration successfully
addresses certain components of the task.

2) Base Policies: We consider two kinds of IL base policies
to test the robustness of our algorithm :

GMM-based policy : We utilize Gaussian mixture model-
based behavior cloning (BC) policies from [17], which has
an RNN backbone. To introduce an additional challenge, we
train policies for the Lift and Can tasks using noisier multi-
human demonstrations. Since the Square task is inherently
challenging, we use proficient-human demonstrations, as even
high-quality demonstrations struggle to completely solve the
task.

Diffusion-based policy : To ensure a consistent comparison,
we use the same Diffusion policies from DPPO [21] for our ex-
periments. For Robosuite tasks, they use noisier multi-human
demonstrations, while for the Franka Kitchen environments,
they directly use datasets from D4RL benchmark.

B. Baselines

We compare our proposed approach against finetuning
methods, demo augmented RL methods and other Residual
RL methods.

Finetuning methods : As a baseline for Diffusion-based
policies, we use the recently proposed DPPO [21]. DPPO
formulates the denoising process of the Diffusion policy as a
separate MDP, effectively modeling the entire trajectory as a
sequence of MDPs. The policy is then optimized using policy
gradient across this entire chain of MDPs.

Demo augmented RL methods : We compare our method
against three demo-augmented RL approaches. IBRL [13]]
maintains both an IL policy trained on demonstrations and
an RL policy trained from scratch. During environment inter-
action and RL training, both policies propose actions, and the
action with the highest @) value is selected. A variant of this
approach, IBRL-RPL, replaces the RL policy learned from
scratch with a residual policy. We conduct experiments with
both versions of IBRL.

Residual RL methods : The method most closely related to
ours is Policy Decorator [28], which also aims to mitigate
excessive exploration in Residual RL. It addresses this by
sampling actions uniformly from both the residual and base
policies while gradually decreasing the proportion of actions
taken from the base policy. Additionally, it bounds the actions
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of the residual policy. For completeness, we also compare our
approach with the standard Residual RL [26] |14] algorithm,
incorporating our proposed modifications to the critic.

C. Results and Analysis

We analyze the results for GMM-based policies in
Sec. [V-CT] and the results of Diffusion policies in Sec.
We compared the performance of our method with both
distance-to-data and ensemble variance as the uncertainty
metric for these results and further ablations are done in
Sec. VII-ETL

1) GMM-based policies: We present the results of our
experiments with GMM based policies in Figure [3] We plot
the success rate over the course of environment interactions.
Our method (red line) is able to outperform all the baselines
in the three Robosuite environments. We note that there is
an initial dip in the performance for our method where the
residual policy is in exploration phase, but it is stable once
the exploration phase ends. IBRL performs the best out of the
other baselines with its performance comparable to our method
for the Lift Task, though the initial dip in performance is more
significant, and it is still unstable afterwards. We performed
a hyperparameter sweep for the two additional parameters of
Policy Decorator, namely the residual bound and the decay

rate. Further detail of baselines can be found in appendix.

2) Diffusion policies: We present the results for Diffusion
policies in Figure ] We run the experiments for the Kirchen
Complete environment of the D4RL benchmark. In Robosuite,
we perform experiments in the Can and Square environments,
excluding the Lift environment because of the near-optimal
performance of Diffusion policy on that task. We performed
a hyperparameter sweep of Policy Decorator as mentioned in
Sec. [IV-CI] Our approach is able to achieve higher success
rates than all the baselines in the Kitchen Complete envi-
ronment. In the Can environment, although IBRL is able
to reach a higher success rate faster than our method, it
does not maintain its performance. We note that even though
DPPO’s performance is stable in Kitchen Complete and Can
environments, its improvement over the initial performance
of the base policy is slow. Our method has comparable
performance to DPPO for the Square task despite an initial dip
in the performance. These results suggest that our approach
is most promising in scenarios where the initial base policy
performance is average, and is comparable in scenarios where
the initial base policy performance is bad.
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D. Combined Action vs Residual Action

To emphasize the significance of utilizing combined actions
for stochastic policies, we compared our modified SAC algo-
rithm for Residual RL without uncertainty estimates to the
original Residual RL formulation. For this comparison, we
used the GMM policy as the stochastic base policy and a
standard MLP policy as the deterministic base policy, applied
to the Lift task in Robosuite. The results of using combined
actions and residual actions during learning for both stochastic
and deterministic base policies are shown in Figure [5} The
findings reveal that relying solely on the residual action
does not yield effective results for stochastic base policies,
highlighting the necessity of combining actions in such cases.
In contrast, for deterministic base policies, either residual
actions or combined actions can be effectively used.

E. Ablations

We ablated our proposed approach with different decaying
strategies for the uncertainty threshold in Sec. and with
different decay rates in Sec. We present some additional
ablations in the supplementary material. All ablations are
performed with the Diffusion base policy for the Can task.

1) Threshold Decay Strategy: We tried different strategies
for decaying the uncertainty threshold 7: exponentially decay-
ing the threshold to zero, exponentially decaying to a minimum
threshold, and keeping the threshold constant. We plot the
success rate and the percentage of base policy actions used
in Figure [6] We observe that exponential decay has the most
stable performance out of the three. Exponentially decaying
to a minimum threshold converges at a lower success rate
compared to exponentially decaying the threshold to 0. The
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base actions used when decaying the threshold to a minimum
value start increasing once that minimum threshold value
is reached, signifying that the optimal policy stays within
the distribution of base policy. Keeping the threshold value
constant restricts residual policy to escape the performance of
the initial base policy.

2) Threshold Decay Rate: We evaluated our algorithm with
different decay rates in Figure Lower rates resulted in
aggressive exploration, causing performance dips that were
hard to recover from, while higher rates slowed the conver-
gence. We need to balance decay rates for effective exploration
without hindering convergence. However, our approach is not
too sensitive to the chosen decay rate, as the performance is
similar for decay rates ranging between the 300k-500k range.

V. CONCLUSION AND FUTURE WORK

In this work we propose two improvements to the Residual
RL framework to accelerate the learning with stochastic base
policies. First, we use uncertainty estimates of the base policy
to constrain the exploration of residual learning. Second,
we adapt Residual RL to handle stochastic base policies
by proposing an asymmetric actor-critic approach in which
the critic observes the combined action, while the actor
predicts only the residual action. Our method is able to
outperform various baselines on tasks from Robosuite and the
D4RL Benchmark. While our proposed method demonstrates
strong performance, it would also benefit from a more robust
epistemic uncertainty metric. We believe that with reliable
uncertainty metrics, our approach could also be applied to
larger models including robot foundation models.
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VI. SUPPLEMENTARY

A. Environments

The observation space and the action space of each envi-
ronment used is below -

1) Lift - 19 dim observation space with object state and
robot end effector state. Action space is 7 DoF end
effector pose.

2) Can - 23 dim observation space with object state and
robot end effector state. Action space is 7 DoF end
effector pose.

3) Square - 23 dim observation space with object state
and robot end effector state. Action space is 7 DoF end
effector pose.

4) Kitchen - 60 dim observation space with all object
states and velocities, and robot joint states and angular
velocity. Action space is 9 DoF joint angular velocity
and gripper linear velocity.

VII. BASE POLICIES

A. GMM Base Policy

We use Robomimic [17] to train Gaussian Mixture Model
based policies with a Recurrent Neural Network backbone.

B. Diffusion policy

We used the same base policies from DPPO [21] to keep
the comparisons consistent. The Diffusion policies are trained
with an action horizon of 1 and 20 denoising steps.

C. Hyperparameters

We used the same hyperparameters in each environment
for both GMM-based and Diffusion-based. We keep same
parameters for actor and critic for Robosuite environments
and used the advised hyperparametes from the DPPO paper
for kitchen environment. Hyperparameter details can be found
in Table |l The uncertainty threshold value, U and decay rate
values for our proposed approach can be found in Table

Environment | Actor & Critic Dimensions | Actor Ir | Critic Ir
Robosuite (256,256) le-4 le-4
Kitchen (256,256,256) le-5 le-3

TABLE I: Hyperparameters used for each environment

Environment Base Policy U Decay Rate
Lift GMM le-6 200k
Can GMM 2e-5 75k
Square GMM Se-5 150k
Kitchen Complete Diffusion 2.5e-3 200k
Can Diffusion 4.5e-5 400k
Square Diffusion 4.5e-5 M

TABLE II: Uncertainty threshold U and Decay Rate values
for our method



Environment Base Policy e H
Lift GMM 0.1, 0.2, 0.05 400k, 600k
Can GMM 0.05,0.1,0.2,0.5 | 400k, 600k, 800k
Square GMM 0.05, 0.1, 0.5 750k, 1M
Kitchen Complete Diffusion 0.1, 0.2, 0.3 400k, 600k
Can Diffusion 0.2, 0.5 400k

TABLE III: Residual bound « and Progressive Exploration
schedule H for Policy Decorator

D. Tuning Policy Decorator

Policy Decorator [28] has two hyperparamters namely, «
the residual bound which scales the residual action to limit
exploration and H to schedule the exploration progressively.
According to their paper, the « value is set close to the action
scale of demonstration data while it is advised to keep H
large as a safe choice. We present the hyperparameters values
we used in our sweep in Table The authors perform an
ablation with DPPO in their appendix but the hyperparmeters
were not mentioned and we have reached out to the authors
for the same.

E. Ablations

We ablated our proposed approach with more uncertainty
metrics in Sec. and with other variations of the kitchen
environment in Sec.

1) Uncertainty Metrics: We tested our algorithms with two
kinds of uncertainty metrics: 1) Distance-to-data as defined
in Eq. 2l and 2) Sample Variance, where sampling multiple
actions from the Diffusion policy for the same observed state
is used to calibrate confidence. Low variance in the sampled
actions indicates that the policy is confident in its predictions,
where high variance indicates higher uncertainty. We sample 5
action predictions to calculate the variance. We can observe in
Figure [§] that the Distance-to-data metric worked the best for
the Can task, where we only have task-specific demonstration
data in the training data. This is because Distance-to-data
provides only epistemic uncertainty estimates, unlike sample
variance of the Diffusion policy which contains both aleatoric
and epistemic uncertainty. We further expand on the poor
performance on Kitchen Partial and Kitchen Mixed below.

2) Kitchen Environments: Next, we tested our method on
the other two variations of the kitchen environments, Kitchen
Partial and Kitchen Mixed. As seen in Figure [0] our method
is not able to outperform the base policy. One key assumption
we make in our algorithm is that when the base policy is
certain, it will also be correct. However, this assumption does
not hold true for these two environments: the base policies for
these two environments are trained on the random play data,
so the confidence and correctness of the policy is not strongly
correlated, resulting in poorer performance. Thus, even with
different uncertainty metrics in Sec. the performance
remains subpar.
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Fig. 8: Ablations for different uncertainty metrics. Distance-to-data has the best performance.
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Fig. 9: Ablations for the other kitchen environments that contain undirected demonstrations.
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